Plotting in Jupyter Notebook¶

In [104]:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

Section 1: Plotting Math functions¶

In [105]:
#directions: plot two math functions together in the same plot, using two different colors and different line styles, and label the plots, axis. 
x = np.linspace(-2, 2, 100)
y1 = np.sin(x)     #two math functions
y2 = x**3

plt.plot(x, y1, color='orange', linestyle='-.', label='y = sin(x)')     #different line colors, styles, labels
plt.plot(x, y2, color='purple', linestyle=':', label='y = x³')

plt.title('y = sin(x) with y = x³')
plt.xlabel('x-axis')     #axis
plt.ylabel('y-axis')

plt.legend()

plt.show()
No description has been provided for this image

Section 2: Making Pie Charts of Data in Excel¶

In [106]:
male_new_cases = pd.read_excel(r"C:\Users\QBPAM\Downloads\BigData AI Cancer class by Yongmei Wang\Group-Training-Male-Cancer-statistics.xlsx", sheet_name = "Estimated New Cases")
male_new_cases
Out[106]:
Unnamed: 0 Male %
0 Prostate 299010 29
1 Lung & bronchus 116310 11
2 Colon & rectum 81540 8
3 Urinary bladder 63070 6
4 Melanoma of the skin 59170 6
5 Kidney & renal pelvis 52380 5
6 Non-Hodgkin lymphoma 44590 4
7 Oral cavity & pharynx 41510 4
8 Leukemia 36450 4
9 Pancreas 34530 3
In [107]:
categories = male_new_cases['Unnamed: 0']
sizes = male_new_cases['%']

plt.figure(figsize = (8,8))
plt.pie(sizes, labels = categories, autopct = '%1.1f%%', startangle = 90)   #autopct formats the numbers
plt.axis('equal')    #makes the circle perfectly round
plt.title('Statistics of Estimated New Male Cases')
plt.show()
No description has been provided for this image
In [108]:
male_deaths = pd.read_excel(r"C:\Users\QBPAM\Downloads\BigData AI Cancer class by Yongmei Wang\Group-Training-Male-Cancer-statistics.xlsx", sheet_name = "Estimated Deaths")
male_deaths
Out[108]:
Unnamed: 0 Male %
0 Lung & bronchus 65790 20
1 Prostate 35250 11
2 Colon & rectum 28700 9
3 Pancreas 27270 8
4 Liver & intrahepatic bile duct 19120 6
5 Leukemia 13640 4
6 Esophagus 12880 4
7 Urinary bladder 12290 4
8 Non-Hodgkin lymphoma 11780 4
9 Brain & other nervous system 10690 3
In [109]:
categories1 = male_deaths['Unnamed: 0']
sizes1 = male_deaths['%']

plt.figure(figsize = (8,8))
plt.pie(sizes1, labels = categories1, autopct = '%1.1f%%', startangle = 90)
plt.axis('equal')
plt.title('Statistics of Estimated Male Deaths')
plt.show()
No description has been provided for this image
In [110]:
female_new_cases = pd.read_excel(r"C:\Users\QBPAM\Downloads\BigData AI Cancer class by Yongmei Wang\Female-Cancer-Statistics.xlsx", sheet_name = "Estimated New Cases")
female_new_cases
Out[110]:
Unnamed: 0 Female %
0 Breast 310720 32
1 Lung & bronchus 118270 12
2 Colon & rectum 71270 7
3 Uterine corpus 67880 7
4 Melanoma of the skin 41470 4
5 Non-Hodgkin lymphoma 36030 4
6 Pancreas 31910 3
7 Thyroid 31520 3
8 Kidney & renal pelvis 29230 3
9 Leukemia 26320 3
In [111]:
categories2 = female_new_cases['Unnamed: 0']
sizes2 = female_new_cases['%']

plt.figure(figsize = (8,8))
plt.pie(sizes2, labels = categories2, autopct = '%1.1f%%', startangle = 90)
plt.axis('equal')
plt.title('Statistics of Estimated New Female Cases')
plt.show()
No description has been provided for this image
In [112]:
female_deaths = pd.read_excel(r"C:\Users\QBPAM\Downloads\BigData AI Cancer class by Yongmei Wang\Female-Cancer-Statistics.xlsx", sheet_name = "Estimated Deaths")
female_deaths
Out[112]:
Unnamed: 0 Female %
0 Lung & bronchus 59280 21
1 Breast 42250 15
2 Pancreas 24480 8
3 Colon & rectum 24310 8
4 Uterine corpus 13250 5
5 Ovary 12740 4
6 Liver & intrahepatic bile duct 10720 4
7 Leukemia 10030 3
8 Non-Hodgkin lymphoma 8360 3
9 Brain & other nervous system 8070 3
In [113]:
categories3 = female_deaths['Unnamed: 0']
sizes3 = female_deaths['%']

plt.figure(figsize = (8,8))
plt.pie(sizes3, labels = categories3, autopct = '%1.1f%%', startangle = 90)
plt.axis('equal')
plt.title('Statistics of Estimated Female Deaths')
plt.show()
No description has been provided for this image
In [ ]: